Search results for "Quadratic algebra"
showing 9 items of 9 documents
The overlap algebra of regular opens
2010
Abstract Overlap algebras are complete lattices enriched with an extra primitive relation, called “overlap”. The new notion of overlap relation satisfies a set of axioms intended to capture, in a positive way, the properties which hold for two elements with non-zero infimum. For each set, its powerset is an example of overlap algebra where two subsets overlap each other when their intersection is inhabited. Moreover, atomic overlap algebras are naturally isomorphic to the powerset of the set of their atoms. Overlap algebras can be seen as particular open (or overt) locales and, from a classical point of view, they essentially coincide with complete Boolean algebras. Contrary to the latter, …
Finite-dimensional non-associative algebras and codimension growth
2011
AbstractLet A be a (non-necessarily associative) finite-dimensional algebra over a field of characteristic zero. A quantitative estimate of the polynomial identities satisfied by A is achieved through the study of the asymptotics of the sequence of codimensions of A. It is well known that for such an algebra this sequence is exponentially bounded.Here we capture the exponential rate of growth of the sequence of codimensions for several classes of algebras including simple algebras with a special non-degenerate form, finite-dimensional Jordan or alternative algebras and many more. In all cases such rate of growth is integer and is explicitly related to the dimension of a subalgebra of A. One…
Hom-Lie quadratic and Pinczon Algebras
2017
ABSTRACTPresenting the structure equation of a hom-Lie algebra 𝔤, as the vanishing of the self commutator of a coderivation of some associative comultiplication, we define up to homotopy hom-Lie algebras, which yields the general hom-Lie algebra cohomology with value in a module. If the hom-Lie algebra is quadratic, using the Pinczon bracket on skew symmetric multilinear forms on 𝔤, we express this theory in the space of forms. If the hom-Lie algebra is symmetric, it is possible to associate to each module a quadratic hom-Lie algebra and describe the cohomology with value in the module.
Algebras with involution with linear codimension growth
2006
AbstractWe study the ∗-varieties of associative algebras with involution over a field of characteristic zero which are generated by a finite-dimensional algebra. In this setting we give a list of algebras classifying all such ∗-varieties whose sequence of ∗-codimensions is linearly bounded. Moreover, we exhibit a finite list of algebras to be excluded from the ∗-varieties with such property. As a consequence, we find all possible linearly bounded ∗-codimension sequences.
Extended-order algebras as a generalization of posets
2011
Motivated by the recent study of several researchers on extended-order algebras, introduced by C. Guido and P. Toto as a possible common framework for the majority of algebraic structures used in many-valued mathematics, the paper focuses on the properties of homomorphisms of the new structures, considering extended-order algebras as a generalization of partially ordered sets. The manuscript also introduces the notion of extended-relation algebra providing a new framework for developing the theory of rough sets.
Matrix algebras of polynomial codimension growth
2007
We study associative algebras with unity of polynomial codimension growth. For any fixed degree $k$ we construct associative algebras whose codimension sequence has the largest and the smallest possible polynomial growth of degree $k$. We also explicitly describe the identities and the exponential generating functions of these algebras.
Banach Partial *-Algebras and Quantum Models
2007
C*-algebras are, as known, the basic mathematical ingredient of the Haag- Kastler (Haag and Kastler 1964) algebraic approach to quantum systems, with infinitely many degrees of freedom. The usual procedure starts, in fact, with associating to each bounded region V of the configuration space of the system the C*-algebra AV of local observables in V. The uniform completion A of the algebra generated by the AV ’s is then considered as the C*-algebra of observables of the system
Generalised Deformations, Koszul Resolutions, Moyal Products
1998
We generalise Gerstenhaber's theory of deformations, by dropping the assumption that the deformation parameter should commute with the elements of the original algebra. We give the associated cohomology and construct a Koszul resolution for the polynomial algebra [Formula: see text] in the "homogeneous" case. We then develop examples in the case of [Formula: see text] and find some Moyal-like products of a new type. Finally, we show that, for any field K, matrix algebras with coefficients in K and finite degree extensions of K are rigid, as in the commutative case.
Almost polynomial growth: Classifying varieties of graded algebras
2015
Let G be a finite group, V a variety of associative G-graded algebras and c (V), n = 1, 2, …, its sequence of graded codimensions. It was recently shown by Valenti that such a sequence is polynomially bounded if and only if V does not contain a finite list of G-graded algebras. The list consists of group algebras of groups of order a prime number, the infinite-dimensional Grassmann algebra and the algebra of 2 × 2 upper triangular matrices with suitable gradings. Such algebras generate the only varieties of G-graded algebras of almost polynomial growth, i.e., varieties of exponential growth such that any proper subvariety is polynomially bounded. In this paper we completely classify all sub…